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Abstract
Background and objectives: Protein disulfide isomerases (PDIs) are essential enzymes that facilitate the proper folding of 
proteins and maintain protein quality within the endoplasmic reticulum. Dysregulation of PDIs has been correlated with nu-
merous disorders, including cancer and rheumatoid arthritis (RA). E64FC26 (EFC), a small molecule that inhibits a wide range 
of PDI family members, has shown promise as a therapeutic agent in oncology. However, its effects on RA have not yet been 
studied. This research investigates the efficacy of EFC as a potential treatment for RA.

Methods: To investigate EFC’s effects on RA fibroblast-like synoviocytes, several assays were employed, including Cell Count-
ing Kit-8 for cell viability, EdU for cell proliferation, Transwell for migration and invasion, TUNEL for apoptosis, and in vitro 
tube formation assays for angiogenesis. Flow cytometry was used to assess apoptosis in detail. Cytokine production was 
analyzed using ELISA and real-time polymerase chain reaction. In vivo, a collagen-induced arthritis model was developed in 
DBA mice to evaluate EFC’s effects on inflammation, disease progression, and bone damage. RNA sequencing was utilized to 
identify the molecular pathways influenced by EFC treatment.

Results: EFC exhibited significant anti-inflammatory effects on RA fibroblast-like synoviocytes, reducing cell proliferation, mi-
gration, invasion, angiogenic activity, and cytokine secretion, while simultaneously promoting apoptosis. In vivo experiments 
using the collagen-induced arthritis mouse model showed that EFC alleviated inflammation, slowed disease progression, and 
preserved joint and bone integrity. RNA sequencing data suggested that EFC acts through pathways associated with inflam-
mation and apoptosis regulation.

Conclusions: The findings of this research underscore EFC’s therapeutic potential in managing RA. These results pave the way 
for the development of inhibitors targeting the PDI family as innovative treatments for RA.
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Introduction
Rheumatoid arthritis (RA) is an inflammatory disease that causes 
progressive joint destruction, including synovial inflammation and 
cartilage degradation.1 During disease progression, fibroblast-like 
synoviocytes (FLSs) become activated, producing excessive cy-
tokines that contribute to pannus formation and subsequent bone 
erosion.2 Current RA therapies primarily aimed to control inflam-
mation and achieve clinical remission.3 However, approximately 
30–40% of patients fail to respond adequately to available treat-
ments.4 This emphasizes the critical importance of developing 
novel RA therapy techniques.
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Protein disulfide isomerases (PDIs) are a class of related oxi-
doreductases that assist in protein folding in the endoplasmic retic-
ulum (ER). These enzymes catalyze the synthesis, rearrangement, 
and elimination of disulfide bonds, collaborating with molecular 
chaperones to fold secretory proteins and control misfolded ones 
via refolding or destruction. Notably, PDIs are integral to the pro-
teostasis network, a system that links protein folding to cellular ho-
meostasis mechanisms in response to environmental or metabolic 
demands. As such, PDIs play an important role in maintaining ER 
protein balance and supporting multiple physiological activities, 
including glucose metabolism, calcium storage, organelle biogen-
esis, and adipogenesis.5 Dysregulation of PDI activity has been 
implicated in various pathological conditions,6 suggesting that PDI 
inhibition may hold therapeutic potential for disease management.

E64FC26 (EFC) is a potent pan-inhibitor of PDIs, targeting 
several members of the PDIA family, including PDIA1, PDIA3, 
PDIA4, TXNDC5, and PDIA6. It acts as a covalent small-mole-
cule inhibitor by binding irreversibly to active cysteine residues 
in the catalytic domain of PDIs as o-quinones.7 This binding 
prevents PDIs from returning to their oxidized monomeric state, 
disrupting the formation of disulfide bonds in unfolded proteins 
and impeding misfolded protein remodeling. Consequently, this 
inhibition leads to an increase in improperly folded proteins. EFC 
has demonstrated therapeutic efficacy in diseases such as multiple 
myeloma,8,9 and research suggests that PDIs, including TXNDC5 
and PDIA3,10–13 are also implicated in RA pathology.

Studies have highlighted PDIs’ involvement in modulating im-
mune cell functions and inflammatory responses in RA. Research 
by Wang et al.14 demonstrated that PDI overexpression promotes 
the production of cytokines that drive inflammation and synovial 
proliferation of cells, highlighting its role in disease development. 
Furthermore, clinical investigations have shown that PDI expres-
sion levels are significantly elevated in the synovial tissues of RA 
patients compared to healthy controls, suggesting a pathogenic 
role for these enzymes. Inhibition of PDI activity has emerged as 
a promising therapeutic approach. Yang et al.15 provided evidence 
for PDI’s potential as a therapeutic target by showing that inhibit-
ing PDI can successfully lower inflammation and joint degenera-
tion in RA model mice. Given these findings, it is reasonable to 
hypothesize that EFC may also exhibit therapeutic benefits in RA.

The goal of this study was to examine EFC’s anti-inflammatory 
qualities in RA and investigate its potential for clinical use.

Materials and methods

Cell culture and cell treatment
Synovial tissue samples were obtained from 12 individuals un-
dergoing joint replacement surgery (six females, six males; age 
range: 48–66 years; mean age: 57 years). All participants satisfied 
the rheumatoid arthritis classification criteria established by the 
American College of Rheumatology in 1987.16 All patients provid-
ed written informed consent in accordance with the Declaration of 
Helsinki, and the Shandong Medical and Biotechnology Center’s 
Institutional Review Board authorized the study (approval num-
ber: SMBC2020-03). Synovial tissues were sectioned and digested 
with collagenase III and II (Solarbio, Hangzhou, China) for 6 h 
(Gibco, Carlsbad, CA, USA).

Initial cytotoxicity assays were conducted to determine the op-
timal concentration of E64FC26 (EFC). RA FLSs were seeded in 
24-well plates at a density of 3–5 × 105 cells per well and sub-
jected to a 12-h serum starvation phase. Treatment groups were 

then exposed to varying concentrations of EFC for 6 h,17,18 after 
which cells were stimulated with interleukin-1β (IL-1β, 10 ng/mL; 
Solarbio, Beijing, China) for 20 h.

Peripheral blood mononuclear cells (PBMCs) were isolated 
from heparinized blood samples using Ficoll-Hypaque density 
gradient centrifugation (Sigma-Aldrich). PBMCs were cultured in 
RPMI-1640 medium (Gibco, Carlsbad, CA, USA) supplemented 
with 10% fetal bovine serum and stimulated overnight with li-
popolysaccharide (LPS, 100 ng/mL; Solarbio, Hangzhou, China). 
EFC was applied to PBMCs at the same concentrations and dura-
tions as those used for RA FLSs.

THP-1 monocytes, sourced from BNCC (Henan, China), were 
differentiated into M1 macrophages by treating them with 200 
nM phorbol-12-myristate-13-acetate (Sigma-Aldrich, St. Louis, 
MO) for 24 h, followed by stimulation with LPS (250 ng/mL) and 
interferon-γ (20 ng/mL; PeproTech, NJ, USA) for an additional 48 
h.19 Subsequently, M1 macrophages were treated with EFC using 
the same concentrations and incubation periods as those applied 
to RA FLSs.

Cell Counting Kit-8 (CCK-8) assay
Cells were seeded into 96-well plates at a density of 3 × 104 cells 
per well, then treated with the specified concentrations of EFC and 
methotrexate. Following treatment, 10 µL of CCK-8 reagent (So-
larbio, Hangzhou, China) was added to each well, and the plates 
were incubated for 1 h. The absorbance was recorded at 450 nm 
with a microplate reader (SpectraMax ID3, Molecular Devices, 
Silicon Valley, USA).

EdU assay
The EdU proliferation assay was carried out as previously de-
scribed.20 In brief, 1 × 104 cells were seeded onto 24-well plates 
and subsequently treated for 24 h with EFC at 1 µM and 2 µM, as 
well as methotrexate (10 µM). EdU staining was performed using 
the EdU DNA Cell Proliferation Kit (RiboBio, Guangzhou, Chi-
na). Cells were treated with EdU (1:1,000) for 10 h, then fixed with 
paraformaldehyde and permeabilized with PBS containing 0.3% 
Triton X-100 for 10 m. The cells were then stained in the dark 
for 30 m with Apollo staining solution, followed by 5 m of DAPI 
staining to allow for visibility with an Olympus fluorescent micro-
scope (Olympus Culture Microscopes, Center Valley, PA, USA).

Real-time polymerase chain reaction (PCR)
Total RNA was isolated using Trizol reagent (Vazyme, Nanjing, 
China), with RNA purity values ranging from 1.8 to 2.0. Com-
plementary DNA (cDNA) was synthesized from 1 µg of RNA 
employing the THUNDERBIRD® Next SYBR quantitative PCR 
(qPCR) mixture (TOYOBO, Japan). Real-time quantitative PCR 
was conducted using the SYBR Green Mastermix kit (Cwbio, Ji-
angsu, China) on a Roche 480 instrument (Basel, Switzerland). 
Primer sequences used are provided in Table 1.

Migration, invasion, and angiogenesis experiment
Transwell chambers (Corning, Corning, USA) were used accord-
ing to the manufacturer’s protocol. 1 × 104 cells were resuspended 
in 200 µL media with 1% serum and placed in the top chamber. 
500 µL of full culture medium was added to the lower chamber. 
The system was then incubated for 14 h at 37°C. Subsequently, the 
cells were fixed in 4% paraformaldehyde for 30 m before being 
stained with 0.1% crystal violet for 20 m. Non-invaded cells were 
scraped from the membrane’s upper surface using a cotton swab, 
and migratory cells were counted. For the invasion assay, Matrigel 
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(BD, USA) diluted in DMEM at a 1:8 ratio was used to uniformly 
coat the inner surface of the chamber. Staining was performed 16 
h post-invasion.

Human umbilical vein endothelial cells (HUVECs) were seeded 
at a density of 1 × 105 cells per well to analyze tube development. 
After 4 h of incubation, tube development was examined under a 
microscope.

Western blot
Total cellular proteins were extracted with RIPA lysis buffer (Be-
yotime, Shanghai, China) and heated at 95°C for 5 m. Protein 
samples (10 µg) were separated using sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE) and subsequently 
transferred to PVDF membranes (Merck, Shanghai, China). After 
blocking the membranes for 1 h with 5% skim milk powder, the 
corresponding primary antibody was incubated overnight at 4°C. 
The antibodies used in the present study were as follows: Bax (21 
kDa, ET1603-34, 1:1,000, HUABIO, Hangzhou, China), Bcl-2 (26 
kDa, 1:1,000, HUABIO, Hangzhou, China), Caspase-3 (32 kDa, 
ET1603-26, 1:1,000, HUABIO, Hangzhou, China), Cleaved Cas-
pase-3 (17 kDa, ab2302, 1:1,000, Abcam, Cambridge, USA), Akt 
(60 kDa, CST#9272, 1:1,000, CST, Danvers, MA, USA), P-Akt (60 
kDa, CST#4060, 1:2,000, CST, Danvers, MA, USA), p65 (65 kDa, 
CST#3031, 1:1,000, CST, Danvers, MA, USA), P-p65 (65 kDa, 
CST#3033, 1:1,000, CST, Danvers, MA, USA), Erk1/2 (42/44 kDa, 
CST#9194, 1:1,000, CST, Danvers, MA, USA), P-Erk1/2 (42/44 
kDa, CST#9101, 1:1,000, CST, Danvers, MA, USA), and GAPDH 
(36 kDa, Abcam, Cambridge, USA). HRP-coupled anti-rabbit IgG 
(ZB-230, 1:5,000, ZSGB-BIO, Beijing, China) or HRP-coupled an-
tibody against mouse IgG (ZB-2306, 1:5,000, ZSGB-BIO, Beijing, 
China) were used as secondary antibodies.

Flow cytometry
Apoptosis was measured using a fluorescein isothiocyanate-Annex-
in V and propidium iodide detection kit from Bestbio (Shanghai, 
China). The cells were first treated with Annexin V binding buffer 
for 10 m, then incubated with fluorescein isothiocyanate-Annexin V 
for 5 m before being stained with propidium iodide. Flow cytometry 
analysis was performed using a FACSCalibur device (BD, New Jer-

sey, USA) to measure the number of apoptotic cells.

TUNEL assay
Apoptosis was measured using the TUNEL test kit (Beyotime, 
China). The experiment was performed according to the manufac-
turer’s instructions. Cells were first fixed in 4% paraformaldehyde 
for 10 m, then permeabilized with 0.3% Triton X-100 for 5 m. The 
cells were then treated with the TUNEL reaction mixture for 1 h 
at 37°C, followed by 5 m of DAPI counterstaining. Fluorescence 
signals from the TUNEL assay were visualized using an Olympus 
fluorescence microscope.

ELISA
Inflammatory cytokines were quantified using an ELISA kit (R&D 
Systems, Minneapolis, USA). Samples were added to the wells and 
incubated with an HRP-conjugated antibody at 37°C for 2 h while 
shaking at 200 RPM. After incubation, the plates were washed, and 
the enzyme-substrate reaction was initiated by adding the chromo-
genic substrate. Absorbance was measured using dual-wavelength 
analysis to determine cytokine concentrations.

Collagen-induced arthritis (CIA) model
Eight-week-old DBA mice (Cyagen Biosciences, Suzhou, China) 
were injected subcutaneously with 100 mg of Freund’s complete 
adjuvant (Biosharp, Anhui, China), emulsified with bovine type 
II collagen (Chondrex, Washington, USA). On day 21, a second-
ary subcutaneous injection of 100 mg of bovine type II collagen 
emulsified with Freund’s incomplete adjuvant (Biosharp, Anhui, 
China) was given.21 Every three days for two weeks after injec-
tion, hind paw thickness and arthritis scores were measured. The 
scoring standards were similar to those of earlier research.22,23 
Based on their arthritis scores, the mice were randomly divided 
into two groups of nine. The first group received EFC injections, 
while the other group was treated with DMSO as a vehicle control. 
The study protocol was approved by the Medical Ethics Commit-
tee of the Institutional Review Board of Shandong Medical and 
Biotechnology Center (SMBC2020-07) and Shandong Province’s 
Animal Care Committee. Informed consent for clinical research 
was obtained accordingly.

Table 1.  The sequence of primers used in this study

Gene Forward Reverse

Homo-GAPDH ACCCAGAAGACTGTGGATGC TTCAGCTCAGGGATGACCTT

Homo-IL-8 ACTGAGAGTGATTGAGAGTGGAC AACCCTCTGCACCCAGTTTTC

Homo-IL-6 ACTCACCTCTTCAGAACGAATTG CCATCTTTGGAAGGTTCAGGTTG

Homo-MMP-1 GGGGAGATCATCGGACAACTC AGAATGGCCGAGTTCATGAGCT

Homo-VEGF AGGGCAGAATCATCACGAAGT AGGGTCTCGATTGGATGGCA

Homo-COX2 TCAAGTCCCTGAGCATCTACGGTT CTGTTGTGTGTGTGTCCCGCAGCCAGAT

Homo-iNOS TTCAGTATCACAACCTCAGCAAG TGGACCTGCAAGTTAAAATCCC

Homo-DDIT-3 GGAAACAGAGTGGTCATTCCC CTGCTTGAGCCGTTCATTCTC

Homo-IGF-1 GCTCTTCAGTTCGTGTGTGGA GCCTCCTTAGATCACAGCTCC

Homo-FGFR-3 TGCGTCGTGGAGAACAAGTTT GCACGGTAACGTAGGGTGTG

Homo-HMOX-1 AAGACTGCGTTCCTGCTCAAC AAAGCCCTACAGCAACTGTCG

Homo-MAPK-14 TCAGTCCATCATTCATGCGAAA AACGTCCAACAGACCAATCAC

Homo- ATF-3 CCTCTGCGCTGGAATCAGTC TTCTTTCTCGTCGCCTCTTTTT

https://doi.org/10.14218/ERHM.2024.00033


DOI: 10.14218/ERHM.2024.00033  |  Volume 10 Issue 1, January 2025 39

Zhao H. et al: E64FC26 suppresses rheumatoid arthritis Explor Res Hypothesis Med

Hematoxylin-eosin (H&E) staining
The knee and elbow joints of mice were fixed for 24 h and sub-
sequently decalcified using a 10% EDTA solution. The decalci-
fication solution was replaced every three days over a period of 
30 days. After decalcification, the tissues were fixed in paraffin 
and sectioned. H&E staining was performed on 5 µm slices of 
the knee, while Safranin-O and Fast Green staining were used to 
evaluate cartilage injury.

Microcomputed tomography scanning
Following four weeks of EFC administration, elbow and knee 
joints, as well as anterior and posterior paw tissues, were harvest-
ed. Bone destruction was assessed using microcomputed tomogra-
phy. The scanning parameters were as follows: X-ray voltage: 90 
kV; X-ray current: 88 µA; scanning duration: 14 m; field of view: 
18 mm; pixel size: 36.0 µm. A total of 512 slices were analyzed for 
bone microarchitecture. Parameters for trabecular bone analysis 
of the tibia included trabecular separation (Tb.Sp, mm), relative 
trabecular bone volume (BV/TV, %), trabecular thickness (Tb.Th, 
mm), and trabecular bone mineral density (Tb.BMD, g/cm3).

Statistical analysis
Data are presented as mean ± standard deviation (SD). The Mann–
Whitney U-test was used for analysis of arthritis and paw swelling. 
GraphPad Prism 8.0 (GraphPad Software, San Diego, CA, USA) 
was used to evaluate the statistical significance of the differences. 
Other outcomes were evaluated using variance analysis (one-way 
ANOVA). A value of <0.05 was considered significant.

Results

RA FLSs were more sensitive to EFC
RA pathogenesis involves a variety of cell types, including FLSs, 
macrophages, and lymphocytes.22 In this study, we initially evalu-
ated cell viability using the CCK-8 assay after treating RA FLSs, 
PBMCs, and THP-1 cells with a range of EFC concentrations. 
As illustrated in Figure 1a, EFC demonstrated cytotoxic effects 
on all examined cell types at micromolar concentrations. Cell vi-
ability decreased in a dose-dependent manner within the 1–20 µM 
range. Specifically, EFC concentrations of 1–2 µM inhibited cell 
proliferation in a concentration-dependent manner without caus-
ing significant toxicity, indicating that these concentrations were 
optimal for subsequent experiments. EFC exhibited the great-
est cytotoxicity toward RA FLSs (IC50 = 4.251 µM) compared 
to PBMCs (IC50 = 9.164 µM) and THP-1 cells (IC50 = 6.106 
µM). Moreover, at lower concentrations (1 µM and 2 µM), EFC 
showed a more pronounced anti-inflammatory effect on RA FLSs 
(Fig. 1b). During RA progression, RA FLSs exhibit heightened 
sensitivity to stimuli such as hypoxia and metabolic dysfunction, 
which can promote ER stress and increase the expression of PDI 
family members, notably TXNDC5.23 This increased sensitivity 
to EFC in RA FLSs, evidenced by the lowest IC50 value, suggests 
greater uptake and stronger binding affinity of EFC in these cells. 
Therefore, RA FLSs were selected for further pharmacological 
investigations.

EFC inhibited the inflammatory activity of RA FLSs
RA FLSs are crucial contributors to joint inflammation in RA, and 
targeting their activity represents an effective strategy to mitigate 
progressive inflammation in affected joints.24 Once activated, RA 
FLSs secrete elevated levels of cytokines, chemokines, and matrix 

metalloproteinases, leading to synovial hyperplasia, pannus devel-
opment, and subsequent bone and cartilage degradation.24–26 As 
illustrated in Figure 2a, treatment with EFC over specified dura-
tions inhibited RA FLS proliferation in a dose-dependent manner. 
Additionally, EdU assay results showed that EFC significantly 
reduced the cell proliferation induced by IL-1β (Fig. 2b). Con-
sistent findings from qPCR analysis demonstrated that EFC sup-
pressed the expression of matrix metalloproteinase-1 and vascular 
endothelial growth factor (Fig. 2c). The inflammatory phenotype 
of RA FLSs is characterized by increased migration, invasion, and 
pro-angiogenic capabilities.27–29 As expected, the number of RA 
FLSs undergoing migration and invasion in response to inflamma-
tory stimuli significantly increased, but this trend was markedly 
attenuated by EFC in a dose-dependent manner (Fig. 2d, e). The 
anti-angiogenic activity of EFC was further evaluated using a tube 
formation assay with HUVECs. As shown in Figure 2f, the super-
natants collected from EFC-treated RA FLSs inhibited HUVEC 
tube formation. Collectively, these findings suggest that EFC ef-
fectively suppresses the inflammatory activity of RA FLSs.

EFC promoted apoptosis of RA FLSs
Previous research has demonstrated that synovial hyperplasia is 
linked to the resistance of RA FLSs to apoptosis.30 Inflammatory 
cytokines and hypoxic conditions trigger ER stress, subsequently 
activating the unfolded protein response (UPR). Activation of the 
UPR decreases the levels of pro-apoptotic proteins while increas-
ing anti-apoptotic proteins, ultimately contributing to apoptotic 
resistance in RA FLSs.31 TUNEL staining and flow cytometry 
analysis indicated that inflammatory stimuli reduced the number 
of apoptotic cells, whereas treatment with EFC (1 µM and 2 µM) 
increased apoptosis in a dose-dependent manner (Fig. 3a, b). To 
further investigate this mechanism, we assessed the expression 
of pro-apoptotic proteins Caspase-3 and Bax, as well as the anti-
apoptotic protein Bcl-2. EFC treatment enhanced the expression 
of cleaved Caspase-3 and Bax while reducing Bcl-2 expression. 
These results indicate that EFC effectively overcomes the apop-
totic resistance of RA FLSs (Fig. 3c).

EFC mitigates disease progression in CIA mice
The type II collagen-induced CIA model exhibits similar patho-
genesis and clinical manifestations to RA, making it a widely used 
model for investigating the pathological mechanisms and evaluat-
ing drug efficacy in RA.32 To assess the safety of EFC, healthy 
DBA mice were given 10 mg/kg intraperitoneally for 14 consecu-
tive days. Routine hematological and biochemical measures did 
not show any significant changes compared to controls.

In the CIA model, EFC was administered intraperitoneally at a 
dose of 5 mg/kg from day 22 to day 49 post-initial immunization. 
The treatment significantly reduced arthritis scores (Fig. 4a) and 
paw swelling in the CIA mice (Fig 4b, c). To investigate whether 
EFC could decrease systemic inflammatory cytokine production, 
serum levels of inflammatory markers were measured. CIA ani-
mals showed significantly higher levels of IL-6, IL-8, IL-1α, and 
TNF-α compared to healthy DBA control mice. Notably, EFC 
treatment significantly attenuated these increases (Fig. 4d).

To determine whether EFC ameliorates synovial hyperplasia, 
knee joint sections from CIA mice were stained with H&E. EFC 
treatment clearly reduced synovial hyperplasia, inflammatory cell 
infiltration, and pannus development in the CIA model (Fig. 4e). 
Following Safranin-O staining, it was evident that EFC treatment 
significantly mitigated cartilage destruction (Fig. 4f). Further-
more, bone parameters such as trabecular bone mineral density 
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Fig. 1. The effects of EFC on RA FLSs, PBMCs, and THP-1 cells. RA FLSs, PBMCs, and THP-1 cells were treated with vehicle control and different concentra-
tions of EFC for 72 h (a) or 24 h (b). (a) The cell number was measured using the CCK-8 assay, and IC50 values were derived. (b) Total RNA was collected, and 
the mRNA levels of IL-6, IL-8, NOS2, and COX2 were measured by RT-qPCR. Data are presented as mean ± standard deviation (SD). **p < 0.01, ***p < 0.001. 
CCK-8, Cell Counting Kit-8; COX, cyclooxygenase; EFC, E64FC26; FLSs, fibroblast-like synoviocytes; IC50, inhibitory concentration 50; IL, interleukin; IFN-γ, 
Interferon-gamma; LPS, lipopolysaccharide; NOS, nitric oxide synthase; PBMCs, peripheral blood mononuclear cells; RA, rheumatoid arthritis; RT-qPCR, real-
time quantitative polymerase chain reaction; THP-1, human monocytic leukemia cell line.
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Fig. 2. Effect of EFC on the bioactivity of RA FLSs. (a) In the presence of IL-1β, RA FLSs were treated with EFC (1 µM, 2 µM) for the indicated time periods. 
MTX was used as a positive control group (10 µM). The CCK-8 assay was used to detect cell viability. (b-f). RA FLSs were pretreated with EFC or MTX for 24 
h, followed by treatment with IL-1β or PBS. Cell proliferation, migration, and invasion were assessed using the EdU test (b), Transwell migration assay (d), 
and Transwell Matrigel invasion assay (e). (c) The expression levels of MMP-1 and VEGF were measured by RT-qPCR. (f) The culture supernatants of RA FLSs 
with indicated treatment were collected for culturing with HUVEC to perform a tube formation assay. Data are presented as mean ± standard deviation (SD). 
*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. CCK-8, Cell Counting Kit-8; EFC, E64FC26; IL, interleukin; MTX, methotrexate; RA, rheumatoid arthritis; 
FLSs, fibroblast-like synoviocytes; RT-qPCR, real-time quantitative polymerase chain reaction; PBS, phosphate buffered saline; MMP-1, matrix metallopro-
teinase-1; VEGF, vascular endothelial growth factor; HUVEC, human umbilical vein endothelial cells.
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Fig. 3. EFC promotes apoptosis of RA FLSs. In response to the activation of IL-1β, RA FLSs were treated with EFC (1 µM, 2 µM), MTX (10 µM), or vehicle for 
24 h. The proportion of apoptotic cells was evaluated by flow cytometry (a) and TUNEL assay (b), with flow cytometry using Alexa Fluor 488 Annexin V/PI. 
(c) Total proteins were extracted, and the expression of apoptosis-related proteins was detected by Western blot. Data are presented as mean ± standard 
deviation (SD). *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. EFC, E64FC26; FLSs, fibroblast-like synoviocytes; IL, interleukin; MTX, methotrexate; RA, 
rheumatoid arthritis; PI, propidium iodide.
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Fig. 4. EFC mitigates disease progression in CIA models. From days 22 to 49, CIA mice received intraperitoneal injections of 5 mg/kg EFC three times per 
week. (a) Arthritis score was assessed every three days. (b) Paw thickness was measured by caliper every three days. (c) Paw was photographed on day 
49. (d) The blood levels of TNF-α, IL-6, IL-8, and IL-1α were evaluated using an ELISA test. (e, f) Knee joint slices were stained with hematoxylin and eosin 
(original magnification, 40× and 100×) and Safranin O (original magnification, 200×). Histological inflammation scores are displayed (n = 3). (g) Microcom-
puted tomography was used to assess bone microstructure. Data are presented as mean ± standard deviation (SD). *p < 0.05, **p < 0.01, ***p < 0.001, 
****p < 0.0001. CIA, collagen-induced arthritis; EFC, E64FC26; IL, interleukin; TNF, tumor necrosis factor; RA, rheumatoid arthritis; FLSs, fibroblast-like 
synoviocytes; ELISA, enzyme-linked immunosorbent assay.
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(Tb.BMD), bone volume fraction (BV/TV%), trabecular number 
(Tb.N), and trabecular thickness (Tb.Th) were considerably lower 
in CIA mice than in healthy controls, while trabecular separation 
(Tb.Sp) increased. However, these parameters were restored with 
EFC treatment (Fig. 4g).

Overall, these findings indicate that EFC effectively inhibits the 
progression of CIA.

RNA-Seq analysis
A transcriptional analysis was performed to investigate the mo-
lecular mechanisms underlying EFC. Figure 5a shows that EFC 
increased the expression of 373 genes while decreasing the expres-
sion of 323 genes in RA FLSs. KEGG pathway analysis revealed 
that differentially expressed genes (DEGs) were primarily in-
volved in pathways such as cytokine-cytokine receptor interaction, 
MAPK, and Ras signaling, all of which are strongly related to the 
inflammatory and apoptosis-resistant characteristics of RA FLSs 
(Fig. 5b). Further analysis identified that 105 of these DEGs were 
associated with both inflammation and apoptosis (Fig. 5c).24,33,34 
The potential interactions among these 105 DEGs were examined 
using the STRING database, revealing extensive and strong as-
sociations between them (Fig. 5d). To confirm the reliability of the 
RNA-seq data, qPCR validation was conducted, showing consist-
ent DEG expression with the sequencing results (Fig. 5e, f).

To determine whether the differential sensitivity of EFC in RA 
FLSs, PBMCs, and THP-1 cells is pathway-dependent, we focused 
on TXNDC5, a member of the PDI family known to facilitate RA 
progression through activation of NF-κB signaling.35 The RNA se-
quencing results indicated activation of the Ras and MAPK path-
ways in response to EFC. Therefore, we assessed the phosphoryla-
tion status of AKT, p65, and ERK1/2 following EFC treatment. 
EFC effectively inhibited the phosphorylation of AKT, p65, and 
ERK1/2, with the inhibitory effects being more pronounced in RA 
FLSs compared to PBMCs and THP-1 cells (Fig. 5g).

Discussion
This study examines the therapeutic potential of EFC for RA treat-
ment using extensively in vitro and in vivo tests. The findings 
highlight the impact of EFC on RA FLSs as well as its overall 
anti-inflammatory benefits in a CIA paradigm. Despite the efficacy 
of current RA therapies, such as disease-modifying antirheumatic 
drugs and biologics targeting TNF and IL-6, a subset of patients—
particularly those classified as difficult-to-treat—fail to achieve re-
mission due to limited treatment options and poor adherence.36–39 
As a result, there is an urgent need for innovative therapies that 
target different mechanisms. EFC presents a promising approach 
by affecting cellular pathways involved in RA FLS proliferation, 
inflammation, and resistance to apoptosis.

The over-proliferation and migration of RA FLSs are critical con-
tributors to synovial hyperplasia and joint damage in RA. Our re-
sults show that EFC significantly inhibits RA FLS proliferation and 
migration at micromolar concentrations, with a more pronounced 
effect on RA FLSs compared to PBMCs and THP-1 cells. Previ-
ous studies underscore the role of cytokine signaling in promoting 
RA FLS proliferation and inflammation.40 In our study, EFC treat-
ment significantly downregulated inflammatory cytokines IL-6, IL-
8, iNOS, and COX-2, suggesting that EFC reduces RA-associated 
inflammation by attenuating these cytokine pathways, thereby limit-
ing RA FLS activity and disease progression.

RA pathology is characterized by an aberrant UPR in RA FLSs, 
which promotes apoptosis resistance and contributes to chronic in-

flammation.41,42 Our findings indicate that EFC effectively induc-
es apoptosis in RA FLSs by increasing the levels of pro-apoptotic 
proteins (Caspase-3, Bax) and decreasing the expression of the an-
ti-apoptotic protein Bcl-2. This suggests that EFC may counteract 
the apoptosis resistance observed in RA, supporting the strategy of 
UPR inhibition to enhance synoviocyte apoptosis. By disrupting 
the UPR pathway, EFC shows potential as a targeted agent to pro-
mote RA FLS apoptosis and mitigate synovial hyperplasia.

In the CIA mouse model, EFC was effective in reducing RA-
associated inflammation and joint destruction while maintaining 
a favorable safety profile. EFC treatment significantly decreased 
levels of inflammatory cytokines, including IL-6, IL-8, IL-1β, and 
TNF-α. These in vivo findings align with in vitro observations, 
demonstrating that EFC not only acts at the cellular level but also 
confers organism-wide therapeutic benefits, reducing synovial 
inflammation and preserving joint integrity. This validates EFC’s 
potential as an anti-inflammatory drug for RA treatment.

Gene expression analysis revealed that EFC influences key 
pathways involved in RA pathology, particularly those related to 
cytokine-receptor interactions and MAPK and Ras signaling path-
ways, which are crucial for RA FLS proliferation and resistance 
to apoptosis.43 EFC inhibited the phosphorylation of AKT and 
ERK1/2, suggesting interference with RA FLS survival mecha-
nisms and further supporting its potential to mitigate RA FLS over-
activity. This modulation of signaling pathways provides valuable 
insight into EFC’s mechanisms of action, reinforcing its relevance 
to RA treatment strategies targeting inflammation and cell survival 
at the molecular level.

Our results confirm the multifaceted therapeutic effects of EFC 
in RA treatment. Preliminary mechanistic analyses suggest that 
EFC disrupts both inflammatory and apoptosis-resistant signaling 
in RA FLSs. Future studies should focus on optimizing interac-
tions between EFC and PDI family proteins to elucidate their roles 
in UPR regulation. Given the complexity of RA and variability in 
patient responses, evaluating EFC’s efficacy in combination with 
current therapies and assessing its potential for clinical translation 
are crucial next steps. Such research could enhance the effective-
ness and accessibility of RA treatments, particularly for difficult-
to-treat patients.

Future directions
While the anti-arthritic effects of EFC in RA have been demonstrat-
ed through both in vitro and in vivo experiments, certain limitations 
remain. Specifically, the heterogeneity of PDI expression among RA 
patients and the identification of populations that would most benefit 
from EFC treatment have yet to be established. Additionally, it is 
unclear whether EFC could be effectively combined with existing 
therapies to enhance clinical outcomes in refractory cases. Conse-
quently, further studies are required to evaluate EFC’s therapeutic 
potential for RA. Investigating the binding affinity of EFC to PDIs, 
the number of binding sites, binding distance, and its influence on 
the spatial conformation of PDIs will provide more information on 
the mechanism of EFC action.44–46 Future research will use tech-
niques such as circular dichroism spectroscopy, differential scanning 
calorimetry, and time-resolved fluorescence analysis to further un-
derstand the molecular mechanisms and dynamics of EFC.47

Conclusions
Our study shows that EFC reduces the inflammatory phenotype 
of RA FLSs, significantly lowering inflammation and joint de-
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(continued)

Fig. 5. Potential pathways in EFC-treated RA FLSs predicted by RNA-seq analysis. (a, b) The Volcano plots and KEGG analysis of the differentially expressed 
genes. (c) Venn diagram comparison analysis between DEGs, apoptosis-related genes, and inflammation-related genes. (d) DEGs related to apoptosis and 
inflammation were added to the STRING database for analysis. (e) qPCR validation of differential gene expression. (f) Validation of RNA sequencing results: 
First, RA FLSs were activated with IL-1β for 6 h. Following that, the cells, with or without silenced HMOX-2 or MAPK-14, were treated with EFC or DMSO for 
another 24 h. RA FLSs were tested for MMP-1 and VEGF-β expression levels using quantitative PCR (qPCR). (g) The total protein was extracted, and the ex-
pressions of total and phosphorylated Akt, p65, and Erk1/2 were determined using Western blotting. Data are presented as mean ± standard deviation (SD). 
*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. DEG, differentially expressed gene; DMSO, dimethyl sulfoxide; EFC, E64FC26; FLSs, fibroblast-like syn-
oviocytes; HMOX-2, heme oxygenase-2; IL, interleukin; KEGG, kyoto encyclopedia of genes and genomes; MAPK-14, mitogen-activated protein kinase-14; 
MMP-1, matrix metalloproteinase-1; qPCR, quantitative polymerase chain reaction; RA, rheumatoid arthritis; VEGF, vascular endothelial growth factor.
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struction in animal arthritis models. These findings expand on 
the known functions of EFC, revealing its therapeutic potential 
for RA alongside its established anti-tumor properties. This high-
lights the need for lateral thinking, which may facilitate optimal 
utilization of existing treatments. Furthermore, our research con-
firms the role of PDIs in promoting RA, providing a foundation 
for the future application of PDIs as therapeutic targets in RA 
management.
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